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I. INTRODUCTION

The study of pulse propagation through granular media
has attracted a great deal of attention for several reasons.
Apart from addressing fundamental problems of pulse dy-
namics in the presence of highly nonlinear interactions, it
also has direct practical application. Pulse propagation has
mostly been studied in monodisperse one-dimensional chains
of spherical granules. Nesterenko first showed �1,2� that an
initial impulse at an edge of a granular chain in the absence
of precompression can result in solitary waves propagating
through the medium. Since then, this system and variants
thereof have been a testbed of extensive theoretical and ex-
perimental studies �3–21�.

The chain model has recently been generalized to study
the �sometimes profound� effects on pulse propagation of
dissipation �4,5,9,10� and of polydispersity in the structure
and mass of the granules �8,14–19�. In particular, polydisper-
sity is frequently introduced in a regular fashion such as in
tapered chains �TCs�, in which the size and/or mass of suc-
cessive granules systematically decreases or increases. Poly-
dispersity is also introduced by distributing masses ran-
domly, by “decorating” chains with small masses regularly
or randomly placed among larger masses, and by optimizing
grain distribution for particular purposes. For example, con-
siderable recent activity has focused on pulse propagation in
“forward tapered chains” �15–19�, with some results cor-
roborated experimentally �20,21�. In these chains each gran-
ule is smaller than the preceding granule according to a sys-
tematic pattern. Among the main results of these studies is
that the energy imparted to the first granule is redistributed
among increasingly larger numbers of granules as the pulse
propagates, thus attenuating the impulse on subsequent gran-
ules as time proceeds. This is a desirable behavior in the
context of shock absorption. In any case, almost all known
results are numerical and therefore predictively limited.
While a few specific realizations have been experimentally
verified, we have found few analytic results for pulse propa-
gation in polydisperse systems �15�. Analytic work is in prin-
ciple possible �albeit in practice often extremely difficult� if a
continuum approximation is valid. This approach was first
implemented successfully for monodisperse granular chains,

where the resulting continuum equations can be �approxi-
mately� solved analytically �1–3,5,7�. Even when a con-
tinuum formulation is appropriate, in many cases the result-
ing equations cannot be solved �9,10�.

In this work we develop a converse approach which fo-
cuses on the fact that the propagating front in granular chains
is often narrow. Our theory invokes a binary collision ap-
proximation, which leads to analytic expressions for various
quantities that characterize the propagating pulse. In an ear-
lier paper we introduced a binary collision approximation for
the calculation of the pulse velocity in monodisperse chains
�6�. Interestingly, although it is “opposite” to the continuum
approximation, we found that the binary collision model pro-
duces results that also capture the dynamics of pulse propa-
gation in such chains. Here we generalize this approach to
forward and backward TCs, that is, to chains in which suc-
cessive granules decrease in size or increase in size. The high
quality of the approximation is ascertained by comparison
with numerical integration of the full equations of motion for
two tapering protocols. In one, the granular radius increases
or decreases linearly �backward or forward “linearly” TC�,
while in the second the radius increases or decreases expo-
nentially �backward or forward “exponentially” TC�.

In Sec. II we introduce the granular chain model and lay
out the binary approximation procedure and its caveats. The
analytic results for the backward TCs and comparisons for
these chains with numerical integration results are presented
in Sec. III. The results and comparisons for the forward TCs
are presented in Sec. IV. Section V provides a summarizing
closure.

II. THE MODEL AND THE BINARY APPROXIMATION

We consider chains of granules all made of the same ma-
terial of density �. When neighboring granules collide, they
repel each other according to the power-law potential

V =
a

n
rk��yk − yk+1�n. �1�

Here yk is the displacement of granule k from its position at
the beginning of the collision, and a is a constant determined

PHYSICAL REVIEW E 80, 031303 �2009�

1539-3755/2009/80�3�/031303�10� ©2009 The American Physical Society031303-1

http://dx.doi.org/10.1103/PhysRevE.80.031303


by Young’s modulus and Poisson’s ratio �22,23�. The expo-
nent n is 5/2 for spheres �Hertz potential�, which we use in
this paper �23�. We have defined

rk� = � 2Rk�Rk+1�

Rk� + Rk+1�
�1/2

, �2�

where Rk� is the principal radius of curvature of the surface of
granule k at the point of contact. When the granules do not
overlap, the potential is zero. The equation of motion for the
kth granule is

Mk
d2yk

d�2 = ark−1� �yk−1 − yk�n−1��yk−1 − yk�

− ark��yk − yk+1�n−1��yk − yk+1� , �3�

where Mk= �4 /3����Rk��
3. The Heaviside function ��y� en-

sures that the elastic interaction between grains only exists if
they are in contact. Initially the granules are placed along a
line so that they just touch their neighbors in their equilib-
rium positions �no precompression�, and all but the leftmost
particle are at rest. The initial velocity of the leftmost particle
�k=1� is V1 �the impulse�. We define the dimensionless quan-
tity

� � 	 M1V1
2

a�R1��
n+1/2
 �4�

and the rescaled quantities xk, t, mk, and Rk via the relations

yk = R1��
1/nxk, � =

R1�

V1
�1/nt ,

Rk� = R1�Rk, Mk = M1mk. �5�

Equation �3� can then be rewritten as

mkẍk = rk−1�xk−1 − xk�n−1��xk−1 − xk�

− rk�xk − xk+1�n−1��xk − xk+1� , �6�

where a dot denotes a derivative with respect to t, and

rk = � 2RkRk+1

Rk + Rk+1
�1/2

. �7�

The rescaled initial velocity is unity, i.e., v1�t=0�=1. The
velocity of the kth granule in unscaled variables is simply V1
times its velocity in the scaled variables.

The equations of motion can be integrated numerically,
and we do so for our TCs. In each chain we observe that the
initial impulse quickly settles into a propagating pulse whose
front typically involves only three granules. In the backward
TCs the narrow pulse is “clean” in the sense that granules
behind it are reflected back and thus do not participate in
forward energy propagation. In the forward TCs the narrow
front carries a tail of moving granules behind it, but this tail
does not affect the propagation dynamics of the narrow front.
From the numerical integration results we are able to extract
quantities such as the pulse peak location, amplitude, and
velocity as functions of granule index and of time. These are
the quantities to be compared with those obtained from the
binary collision theory.

The binary collision approximation is based on the as-
sumption that the transfer of energy along the chain occurs
via a succession of two-particle collisions. First, particle k
=1 of unit velocity collides with initially stationary particle
k=2, which then acquires a velocity v2 and collides with
stationary particle k=3, and so on. The velocities after each
collision can easily be obtained from conservation of energy
and momentum. The velocity vk+1 of granule k+1 after the
collision with granule k is always positive, so this particle
goes on to collide with the next one. On the other hand, the
velocity of granule k after the collision may be positive or
negative depending on the direction of tapering of the chain
�it would be zero for a monodisperse chain�. From these
velocities, a number of other results follow, which we outline
here, but implement for particular chains in later sections.

After the collision of granules k and k+1, the latter
emerges with velocity

vk+1 =
2vk

1 +
mk+1

mk

. �8�

This result can be implemented recursively to obtain

vk = �
k�=1

k−1
2

1 +
mk�+1

mk�

. �9�

To actually evaluate this product we need to implement a
tapering protocol, cf. below.

We wish to use these results to calculate the time it takes
the pulse to move along the chain and, more specifically, the
time it takes the pulse to arrive at the kth granule. For this
purpose, it is convenient to introduce the difference variable

zk = xk − xk+1. �10�

The equation of motion for the difference variable is ob-
tained by subtracting the equations of motion of the two
granules during a collision, cf. Eq. �6�,

ẍk = −
rk

mk
�xk − xk+1�n−1,

ẍk+1 =
rk

mk+1
�xk − xk+1�n−1, �11�

which directly leads to

�kz̈k = − rkzk
n−1. �12�

Here �k=mkmk+1 / �mk+mk+1� is the reduced mass. Equation
�12� is the equation of motion of a particle of mass �k in the
potential �rk /n�zk

n defined for zk	0. The initial condition
żk�0� is simply vk since the velocity of granule k+1 is zero
before the collision. Therefore, from Eq. �9� we can write
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żk�0� = �
k�=1

k−1
2

�1 +
mk�+1

mk�
� . �13�

The energy conservation condition

1

2
żk

2�t� +
rk

n�k
zk

n�t� =
1

2
żk

2�0� �14�

leads to

żk�t� = �żk
2�0� −

2rk

n�k
zk

n�t��1/2

. �15�

We say that the pulse arrives at granule k when the velocity
of granule k surpasses that of granule k−1, and that it moves
on to granule k+1 when the velocity of the �k+1�st granule
surpasses that of the kth granule. The residence time Tk on
granule k is the time that granule k takes to transfer the pulse
from k−1 to k+1, and is given by

Tk = �
0

zk
max dzk

żk

= �
0

zk
max dzk

�żk
2�0� −

2rk

n�k
zk

n�1/2 , �16�

where zk
max is the compression when the velocities of par-

ticles k and k+1 are equal �which is also the maximum com-
pression, cf. Eq. �14��,

zk
max = �n�k

2rk
żk

2�0��1/n
. �17�

The integral can be performed exactly to yield

Tk = 
��n�k

2rk
�1/n

�żk�0���−1+2/n� 
�1 + 1/n�

�1/n + 1/2�

. �18�

Finally, the total time taken by the pulse to pass the kth
granule is obtained by summing Tk,

t = �
k�=1

k

Tk�. �19�

For a monodisperse chain �k=1 /2, rk=1 and żk�0�=1, and
Eq. �18� reduces to the result obtained in �6�. To evaluate
these times explicitly for tapered chains we need to specify a
tapering protocol.

III. BACKWARD TAPERED CHAINS

We proceed to implement these results for various tapered
chains of spherical granules �n=5 /2�, starting with backward
tapering in this section. Two forms of tapering are consid-
ered.

A. Linearly tapered chains

In backward linearly TCs the radii of the granules grow
linearly as Rk=1+S�k−1�, where S�0 is a fixed parameter.
The ratios of the radii and of the masses of two successive
granules then are

Rk

Rk+1
= 1 −

S

1 + Sk
,

mk

mk+1
= �1 −

S

1 + Sk
�3

. �20�

The ratio of the masses can be substituted into Eq. �9�,

vk = �
k�=1

k−1
2

1 + �1 −
S

1 + Sk�
�−3 . �21�

A large-k limit can be evaluated by calculating the derivative
of ln vk with respect to k, retaining leading terms in a Taylor
expansion when both k and Sk�1, and exponentiating. This
leads to the asymptotic scaling relation

vk � k−3/2. �22�

The amplitude of the velocity pulse decreases with increas-
ing grain number, as would be expected since the granules
grow in size and mass.

The associated parameters for a backward linearly TC are
given by

�k = �1 + Sk�3� �1 −
S

1 + Sk
�3

1 + �1 −
S

1 + Sk
�3� , �23�

rk = �1 + Sk�1/2� 1 −
S

1 + Sk

1 −
S/2

1 + Sk
�

1/2

. �24�

Using Eqs. �22�–�24� in Eq. �18�, we find that in the large-k
limit Tk varies with k according to

Tk � k13/10. �25�

The total time t taken by the pulse to reach the kth granule is
obtained from Eq. �19�. For large k, t varies as

t � k23/10. �26�

This growth with k again reflects the slowing down of the
pulse as the granules become more massive. Using Eq. �26�
in Eq. �22�, the decay in time of the pulse amplitude is found
to be

v�t� � t−15/23. �27�

Finally, in order to compute the speed of the pulse in space,
we note that at t=0 the position of each granule in the un-
compressed chain is

X0�k� = Sk2 + 2k�1 − S� + S − 2, �28�

and when the pulse has moved to the kth granule its position
is given by
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X�k,t� = X0�k� + xk�t� . �29�

For large k values, the static contribution X0�k� dominates
and the position of the pulse is

X�t� � k2 � t20/23. �30�

The speed c�t� of the pulse therefore varies in time as

c�t� =
dX

dt
� t−3/20. �31�

Thus, the binary collision approximation in the backward
linearly TC leads to a power-law dependence in both k, Eq.
�22�, and t, Eq. �27�, for the pulse amplitude, for position
�30�, and for speed �31�. Note that these asymptotic decays
are independent of the tapering parameter S.

The comparison of the predictions of the binary collision
approximation with the numerical integration of Eq. �6� is
carried out as follows. First, consider the decay of the am-
plitude of the velocity pulse as a function of k. In Fig. 1 we

show vk vs k from numerical integration of the equations of
motion �solid circles� and as calculated from the binary col-
lision theory, Eq. �21� �open circles�. The comparison is
made for various values of S, as indicated in the caption.
Note that in some regimes of this figure the decay of the
pulse amplitude is S-dependent, as found in Eq. �21� and also
from the numerical integration; the S-independent power-law
decay �22� is only valid when Sk�1. Figure 1 reveals the
single weakest aspect of the theory in that it shows substan-
tial differences in the absolute magnitude of the pulse ampli-
tude between the theoretical and numerical integration re-
sults, but the rate of decay of vk is captured very well, within
�1%–2%, as emphasized by the inset. The inset also shows
the approach to the S-independent power 3/2 for large k, as
predicted in Eq. �22�.

The decay of the velocity pulse in time as obtained from
numerical integration is shown in Fig. 2. The power-law de-
cay �27� predicted from the binary theory is in excellent
agreement with the numerical data. In the inset we show the
power-law exponent for different S values. The long-time
value of the exponent 15 /23=0.652. . . obtained from the
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FIG. 1. The numerical integration data �solid circles� is com-
pared with the binary collision approximation �open circles� for the
decay of the velocity pulse amplitude with k for backward linearly
TCs with S=0.2, 0.4, 0.6, and 0.9, from top to bottom. The inset
shows the decay exponent, whose theoretical value approaches 3/2.
The numerical integration results also approach an S-independent
value that is slightly larger than but close to the theoretical value.
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FIG. 2. The decay of the velocity pulse amplitude with time for
backward linearly TCs with S=0.4 to 0.9 in steps of 0.1 from top to
bottom, as obtained from numerical integration. The inset shows the
rate of decay for different S values. The long-time binary prediction
is 15 /23=0.652. . ., within 2%–3% of the numerical integration
results.
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FIG. 3. Residence time of the pulse on granule k for backward
linearly TCs. Comparison between the binary collision approxima-
tion �open circles, barely visible because of the agreement between
theory and numerical integration� and direct numerical integration
of the equations of motion �solid circles�. From bottom to top, S
=0.1 to 0.9 in steps of 0.1.
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FIG. 4. Position of the pulse in units of grains versus time for
backward linearly TCs. Comparison between the binary collision
approximation �open circles, barely visible because of the agree-
ment between theory and numerical integration� and direct numeri-
cal integration of the equations of motion �solid circles�. From top
to bottom, S=0.3 to 0.9 in steps of 0.1.
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theory is in very good agreement �within 2%–3%� with the
observed data. Furthermore, gratifying agreement is found if
we compare the time Tk obtained from Eq. �18� with numeri-
cal integration results, as seen in Fig. 3. The time t that the
pulse takes to pass by granule k is also very well reproduced
by the theory, cf. Fig. 4.

In Table I the agreement between the theory and the inte-
gration results is made explicit. We list the results of fitting
numerical integration data for much longer chains �N
�400� with a power-law form k=atb. The numerical uncer-
tainties �standard deviations� are in the third decimal place.
For small values of S the data does not reach the values of k
that are needed for the asymptotic behavior t10/23 of Eq. �26�
to be valid �Sk�1�. For the larger values of S the asymptotic
behavior is approached, and here the agreement with the pre-
dicted asymptotic value b=10 /23=0.435. . . becomes evi-
dent. Since Eq. �26� is valid only in the large-k regime, in
these fits we have only used the information for granules k
=300 to k=400.

B. Exponentially tapered chains

A backward exponentially TC is one in which the ratio of
radii of successive granules is constant,

Rk

Rk+1
= 1 − q , �32�

where 0
q
1. The radii of granules thus increase in geo-
metric progression. The radius of the kth granule is Rk= �1
−q�1−k, and the mass ratio of two consecutive granules is

mk

mk+1
= �1 − q�3. �33�

This is the case that has been considered in many previous
studies �15–19�. This mass ratio in Eq. �9� leads to the ve-
locity amplitude

vk = A�q�e−k ln A�q�, �34�

where

A�q� =
1

2
�1 + �1 − q�−3� , �35�

and to the associated parameters

�k =
�1 − q�−3�k−1�

�1 + �1 − q�3�
, �36�

rk = �1 − q/2�−1/2�1 − q�−�k−1�/2. �37�

Substituting Eqs. �34�, �36�, and �37� in Eq. �18� and follow-
ing the steps implemented for the linearly TC we find that
the time t for the pulse to reach the kth granule now grows
exponentially with k for large k,

t � e��q�k, �38�

where

��q� = ln� �A�q��1/5

1 − q
� . �39�

Combining Eq. �34� with Eq. �38� leads to the decay of the
pulse amplitude as a function of time,

v�t� � t−f�q�, �40�

with

f�q� =
1

��q�
ln A�q� . �41�

The position of the kth granule at time t is

X�k,t� =
2 − q

q
��1 − q�−k+1 − 1� + xk�t� . �42�

For large k, we can again ignore the contribution due to the
displacement compared to the dominant static part. This al-
lows us to approximate the pulse position as

X�k� �
2 − q

q�1 − q�
e−k ln�1−q�, �43�

which implies that

TABLE I. Backward linearly TCs: Values of b obtained from the
binary collision approximation and from the numerical integration
of the equations of motion in the asymptotic expression k� tb for
the position of the pulse �in units of grains� as a function of time.
The theoretical asymptotic value of b is 10 /23=0.435. . .

S Theory Numerics

0.3 0.439 0.438

0.4 0.438 0.437

0.5 0.437 0.436

0.6 0.436 0.436

0.7 0.436 0.436

0.8 0.436 0.435

0.9 0.436 0.435

20 40 60 8010�6

10�5

10�4

10�3

10�2

10�1

1

k

v k

FIG. 5. The numerical data �solid circles� is compared with the
binary collision approximation �open circles� for the decay of the
velocity pulse amplitude in backward exponentially TCs for q
=0.01, 0.02, 0.05, and 0.08 from top to bottom.
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X�t� � t1−f�q�/5 �44�

and hence the pulse velocity in time decays as

c�t� � t−f�q�/5. �45�

Thus, for backward exponentially TCs the pulse amplitude
and position vary exponentially in k, but in time the varia-
tions are power laws.

Figure 5 shows the exponential decay of the pulse ampli-
tude with k as predicted from the theory, Eq. �34�, and as
obtained from direct numerical integration of the equations
of motion. We find a small difference between the amplitudes
predicted by theory and those obtained from the numerical
integration, but the predicted decay rate is again in excellent
agreement with the actual data. We compare the decay rates
for each q value obtained by fitting the numerical data in Fig.
5 with those calculated from the theory. The results are
shown in Table II.

The power-law decay of the pulse amplitude in time is
shown in Fig. 6. The variations in the data points for the
largest value of the tapering parameter have no physical sig-
nificance and are of purely numerical origin. The rates of
decay are close to those predicted by the theory, Eq. �40�. In
Table III we compare the two results for different q values.
Note that the asymptotic expressions are valid only in the
long-time limit, a requirement that involves longer times as

the value of q decreases. The small differences in the results
arise mainly because Eq. �40� is a long-time limit �and not
because of the binary approximation per se�.

Finally, the theoretical residence times Tk and the time t
for the pulse to pass through the kth granule are in excellent
agreement with the numerical integration data, as can be seen
in Figs. 7 and 8.

IV. FORWARD TAPERED CHAINS

Next we consider chains where the granules are succes-
sively smaller starting from the granule that is the subject of
the initial impulse, that is, chains with forward tapering. We
present our binary collision approximation results and com-
pare them with the results obtained from the numerical inte-
gration of the full equations of motion �Eq. �6��. We again
consider two different tapering protocols, the linear and the
exponential.

A. Linearly tapered chains

In forward linearly TCs the radii of the granules decrease
linearly as Rk=1−S�k−1�. Note that since the radius of the

TABLE II. Exponential rates of decay for the velocity pulse in k
space for backward exponentially TCs as obtained from the binary
collision approximation �ln A�q� in Eq. �34�� and the numerical in-
tegration of Eq. �6�.

q Theory Numerics

0.01 0.01519 0.01522

0.02 0.03076 0.03088

0.03 0.04673 0.04697

0.04 0.06311 0.06350

0.05 0.07990 0.08047

0.06 0.09711 0.09788

0.07 0.11477 0.11568

0.08 0.13287 0.13378

0.09 0.15144 0.15275

TABLE III. Asymptotic rates of decay for the pulse amplitude in
time for backward exponentially TCs obtained from the binary col-
lision approximation �f�q� in Eq. �41�� and those obtained by fitting
the straight-line portions of the data in Fig. 6.

q Theory Numerics

0.01 1.1605 1.1279

0.02 1.1673 1.1546

0.03 1.1740 1.1744

0.04 1.1808 1.1820

0.05 1.1877 1.1803

0.06 1.1945 1.1952

0.07 1.2015 1.2049

0.08 1.2084 1.2145

0.09 1.2154 1.2256

10 102 103 104
10�4

10�3

10�2

10�1

1

t

v�
t�

FIG. 6. Decay of the pulse amplitude with time for backward
exponentially TCs obtained from numerical integration for q
=0.01, 0.02, 0.05, and 0.08 from top to bottom.
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FIG. 7. The pulse residence time Tk as a function of k for back-
ward exponentially TCs is shown for q=0.01 to 0.06 in steps of
0.01 �top to bottom�. Theory and numerical results are denoted by
open circles and filled circles, respectively.
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first granule is unity, this places an S-dependent restriction
on the chain length N �or an N-dependent restriction on the
tapering parameter S�,

N 
 1 +
1

S
. �46�

In our calculations we set N=100, and accordingly restrict
the value of S to be �0.01. The ratios of the radii and of the
masses of the kth to �k+1�st granules are

Rk

Rk+1
= 1 +

S

1 − Sk
, �47�

mk

mk+1
= �1 +

S

1 − Sk
�3

. �48�

Substituting Eq. �47� in Eq. �9�, we obtain

vk = �
k�=1

k−1
2

1 + �1 +
S

1 − Sk�
�−3 . �49�

When k�1+1 /S we follow the steps described in going
from Eq. �21� to Eq. �22� to find the scaling behavior

vk � �1 −
k

1 + 1/S�
−3/2

. �50�

Since k
1+1 /S, this function grows as k increases. This is
expected since grain mass decreases with increasing k. The
associated parameters �k and rk for forward linear TCs are
obtained by replacing S with −S in Eqs. �23� and �24�. Using
Eq. �50� in Eq. �18� and summing over k, we obtain the
scaling for the time it takes the pulse to pass through the kth
granule,

t � C�S�	1 − �1 + S�23/10�1 −
k

1 + 1/S�
23/10
 , �51�

where C�S�=C0�S��1+O�S�� and

C0�S� =
10
�

23
�5

8
�2/5 
�7/5�


�9/10�
�1 +

1

S
� . �52�

Figure 9 shows the variation in the pulse amplitude with k as
obtained from the theory �Eq. �49�� and the numerical inte-
gration.

As predicted from Eq. �50�, we observe a linear growth in
the pulse amplitude for small k. Also, as k→N the numerical
results show that the velocity behaves as vk�a�1−bk�−3/2

and thus diverges around k�1 /b. Interestingly, we find that
1 /b is very close to �1+1 /S� and thus Eq. �50�, which is in
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FIG. 8. The position of the pulse in units of grains versus time t
for backward exponentially TCs is shown for q=0.01 to 0.06 in
steps of 0.01 �top to bottom�. Theory and numerical results are
denoted by open circles and filled circles, respectively.
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FIG. 9. The numerical integration data �filled circles� is com-
pared with the binary collision approximation results �open circles�
for the velocity pulse amplitude in forward linearly TCs for S from
0.001 to 0.008 in steps of 0.001 �bottom to top�. The inset shows the
variation in the parameter b with S in the fit of vk described in the
text.
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FIG. 10. Comparison of the theory �open circles� and numerical
integration results �filled circles� for the time t taken by the pulse in
forward linearly TCs to reach the kth granule for S from 0.001 to
0.01 in steps of 0.001 from right to left.
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FIG. 11. Change in the pulse amplitude with time for forward
linearly TCs as obtained from numerical integration of the equa-
tions of motion. Results are for S from 0.001 to 0.01 in steps of
0.001 from bottom to top.
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principle restricted to the regime k�1+1 /S, seems to work
well all the way up to the divergence. In the inset in Fig. 9
we compare the values of b obtained from the theory, b
= �1+1 /S�−1, and the fit to numerical data.

In Fig. 10 we compare the results for the time t taken by
the pulse to pass through the kth granule. The change in t
with k is described extremely accurately by the binary colli-
sion approximation result �Eq. �51�� valid for k�1 /S. The
result in Eq. �51� is thus expected to be valid for all k pro-
vided that S is small �1 /S�1�. Interestingly, the result in Eq.
�51� in fact works well for all k�N �with N=100� in the
range 0.001�S�0.01. The time t increases linearly with k
for small k but becomes almost k-independent as k increases.
This is a reflection of the fact that the granular mass and size
become very small and as a result the pulse passes through
these grains very quickly.

The change in the pulse amplitude with time is shown in
Fig. 11. The theoretical result for the time-dependent ampli-
tude can be obtained by combining Eq. �50� with Eq. �51�.
We find that

v�t� � �1 −
t

C�S�
�−15/23

. �53�

For small t the pulse amplitude thus grows linearly with t,
and as t→C�s� it diverges with exponent 15/23. Since the

absolute value of the pulse amplitude is not captured cor-
rectly by the binary collision approximation, the divergence
time C�S� of the pulse amplitude is also different from the
actual divergence time seen in the numerics. However, we
find that the initially linear behavior and the divergence ex-
ponent 15/23 are accurately predicted by the theory. In Fig.
12 we show the pulse residence time obtained for each gran-
ule from numerical integration along with the corresponding
values obtained from the binary collision approximation.

B. Exponentially tapered chains

In this case the radii of the granules decrease as

Rk =
1

�1 + q�k−1 , �54�

where q�0. The velocity of the kth granule can be obtained
from Eq. �34� by replacing q by −q. Figure 13 shows the
comparison of the binary collision approximation results
with the numerical data. We again observe that although the
absolute values differ by a constant amount, the rate of
growth is correctly predicted by the theory. In Table IV we
compare the rates obtained from the fit to the data points in
Fig. 13 with the results of the theory.

The total time taken by the pulse to reach the kth granule
is obtained by substituting Eqs. �34� and �36� in Eq. �18�,
replacing q by −q, and summing over k, cf. Eq. �19�. For
long times, we obtain

TABLE IV. Comparison of the rates for the exponential growth
of the pulse amplitude in forward exponentially TCs in granule
space obtained from the binary collision approximation with those
obtained by fitting the data in Fig. 13.

q Theory Numerics

0.01 0.01481 0.01471

0.02 0.02926 0.02879

0.03 0.04336 0.04267

0.04 0.05710 0.05565

0.05 0.06848 0.07051

0.06 0.08359 0.07833
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FIG. 12. Residence time of the pulse on each granule for for-
ward linearly TCs for S=0.001, 0.002, 0.003, 0.005, and 0.009 from
top to bottom. Numerical integration results: filled circles; binary
collision approximation results: open circles.
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FIG. 13. Change in the pulse amplitude as a function of k for
backward exponentially TCs for q from 0.01 to 0.06 in steps of 0.01
from bottom to top. Numerical integration results: filled circles.
Binary collision approximation results: open circles.
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FIG. 14. Total time taken by the pulse to pass through the kth
granule in forward exponentially TCs for q from 0.01 to 0.06 in
steps of 0.01 �right to left�. Numerical integration results: filled
circles. Binary collision approximation results: open circles.
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t � 1 − e�k−1���−q�, �55�

where ��−q� is obtained by replacing q by −q in Eq. �39�.
Since ��−q�
0, t approaches a constant value at large k. In
Fig. 14 we show both the theory and the numerical results
for the time taken by the pulse to pass through the kth gran-
ule.

The time dependence of the pulse amplitude in the binary
collision approximation is obtained as

v�t� � �1 +
t

M�q�
�−f�−q�

, �56�

where

M�q� =
2
�

5��− q�

�7/5�

�9/10�

� 5
1 − q/2
4�1 + �1 + q�3�

�2/5

, �57�

and f�−q� is obtained by replacing q with −q in Eq. �41�. At
short times v�t� increases linearly with t. Also, since ��−q�

0, M�q�
0 and, as t→M�q�, the velocity diverges with
the exponent f�−q�. These behaviors are shown in Fig. 15.
Again, since the absolute value of the pulse amplitude is not
captured correctly within the binary collision approximation,
the divergence time of the pulse amplitude M�q� is also dif-
ferent from the actual divergence time seen in the numerics.
However, the exponent f�−q� is accurately predicted by the
theory. In Table V we compare the exponent f�−q� obtained
by fitting the numerical data in Fig. 15 with the results of the
theory.

V. CONCLUSIONS

We have introduced an analytic approach to calculate the
behavior of a propagating pulse along a variety of tapered
chains of spherical granules. We implement a binary colli-
sion approximation �6� that supposes that the collision events
by which a pulse propagates involve only two granules at a
time. While the approximation overestimates the pulse am-
plitude, it captures all other properties remarkably well.

These include the rate of decay of the pulse amplitude with
time, the residence time of the pulse on each granule, and the
pulse speed in units of granule and in space. We take note of
other binary collision schemes in the literature. In one �15�,
the granular collisions are described by a hard sphere poten-
tial. In another �24�, the object was to study the effects of
viscoelastic interactions by assigning a velociry-dependent
coefficient of restitution to the granular collisions.

We have implemented our approximation in four different
tapered chains: backward linearly and exponentially tapered
chains �the granules increase in size�, and forward linearly
and exponentially tapered chains �the granules decrease in
size�. In backward linearly tapered chains, where granular
size increases linearly along the direction of pulse propaga-
tion, an initial impulse on the first granule settles into a pulse
whose amplitude, speed, and width change slowly as the
pulse propagates. The pulse speed and the pulse amplitude
decay in granular units and also in real time, as is reasonable
since the granules increase in size and mass along the direc-
tion of propagation. Although the pulse remains narrow in
granule number, the pulse width in real space of course in-
creases as the granules get larger. All these decreases and
increases vary as power laws both in granular units k and in
time t for large k and t, and the decay and growth exponents
are insensitive to the value of the tapering S over the range
that we have tested, 0.1
S�1. On the other hand, for back-
ward exponentially tapered chains, where granule size in-
creases geometrically, the pulse properties change exponen-
tially in k while they exhibit power-law behavior in time. In
this case the rates are strongly influenced by the tapering
parameter q.

In forward linearly tapered chains, where granular size
decreases linearly, the pulse speeds up both in granule num-
ber units and in time, and in fact diverges. The divergence
exponents are again insensitive to the tapering parameter S
and are quantitatively reproduced by the theory. Similar di-
vergences are observed in the forward geometrically tapered
chain, but now the behavior is sensitive to the tapering pa-
rameter q.

In the binary collision approximation the initial velocity
for the collision between granules k and k+1 is taken to be
the velocity of granule k at the end of the collision between

TABLE V. Comparison of the power-law exponent f�−q�, Eq.
�56�, obtained from the binary collision approximation with the
exponent extracted from numerical integration results for forward
exponentially TCs.

q Theory Numerics

0.01 1.1472 1.1361

0.02 1.1406 1.1308

0.03 1.1341 1.1134

0.04 1.1276 1.1237

0.05 1.1211 1.1022

0.06 1.1147 1.1101
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FIG. 15. Numerical integration results for the pulse amplitude as
a function of time in forward exponentially TCs for q from 0.01 to
0.06 in steps of 0.01 �bottom to top�.
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granules k−1 and k. This estimate in turn leads to a pulse
velocity amplitude that is higher than that obtained from the
numerical integration of the full equations of motion, but all
other pulse characteristics are quantitatively reproduced in
all our tapered chains by this analytic approximation. Our
next challenge is to generalize this approach to chains with
other mass variation profiles and even to random chains. This
work is in progress.
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